

JHARGRAM – 721 507

 $(5 \times 2 = 10)$

DEPARTMENT OF MATHEMATICS

ACADEMIC YEAR: 2020 - 2021

INTERNAL EXAMINATION – 2021 SEM: II SUBJECT: MATHEMATICS PAPER: C 3 T (REAL ANALYSIS)

Full marks: 10

Answer any five questions

- 1) Let *S* be a non empty subset of *R* bounded below and $T = \{-x: x \in S\}$. Prove that the set *T* is bounded above and $\sup T = -\inf S$.
- 2) If y be a positive real number show that there exists a natural number m such that $0 < \frac{1}{2^m} < y$.
- 3) Let A and B are subsets of R of which A is closed and B is compact. Prove that $A \cap B$ is compact.
- Let S = (a, b) an open bounded interval. Prove that S' = [a, b]. Here S' denote the derived set of S.
- 5) Prove that a convergent sequence is bounded.
- 6) Use Sandwich theorem to prove that $lim\left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+n)^2}\right] = 0.$
- 7) Use Cauchy's general principle of convergence to prove that the sequence $\{u_n\}$ where

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \text{ is not convergent}$$
8) Prove that
$$\lim_{n \to \infty} \frac{1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \dots + \frac{1}{2n+1}}{2n+1} = 0.$$

Answer booklets has to emailed to the following address -

Department of Mathematics Jhargram Raj College B.Sc(H), Sem-II Internal Assessment 2020-21 Sub: Mathematics, Course: C4

Full Marks: 10

Answer any One question

 $(1 \times 10 = 10)$

1. (a) Solve by the method of undetermined coefficients: $y_2 - 4y_1 + 4y = x^3e^{2x} + xe^{2x}$.

(b) Solve by the method of variation of parameters: $(2x + 1)(x + 1)\frac{d^2y}{dx^2} + 2x\frac{dy}{dx} - 2y = (2x + 1)^2$.

It is being given that y = x and $y = \frac{1}{x+1}$ are two linearly independent solutions of the corresponding homogeneous equation. 5+5

2. (a) Solve: y₂ - y = 1, given that y = 0 when x = 0 and y → a finite limit when x → -∞
(b) Solve: (D⁴ + D³ - 3D² - 5D - 2)y = 3xe^{-x}

5 + 5

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION – 2021 SEM: III SUBJECT: MATHEMATICS PAPER: C 7 T 7 (NUMERICAL METHODS)

Maximum Marks: 10

ANSWER ANY FIVE OF THE FOLLOWING

- 1) If 0.333 is the approximate value of $\frac{1}{3}$, then determine the absolute, relative and percentage error.
- 2) Evaluate the sum $S = \sqrt{3} + \sqrt{5} + \sqrt{7}$ to 4 significant digits and find its absolute, relative and percentage error.
- 3) Explain "Bisection Method" is a root bracketing method. Find a positive root of the equation $x^3 + 3x 1 = 0$ by bisection method.
- 4) Suggest a value of constant k, so that the iteration formula $x = x + k(x^2 3)$ may converge at a good rate, given that x = 3 is a root.
- 5) Using Newton's backward difference formula, find the value of $e^{-1.9}$ from the following table of values –

x	1.00	1.25	1.50	1.75	2.00
<i>e</i> ^{-x}	0.3679	0.2865	0.2231	0.1738	0.1353

6) Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} \, dx$, given that –

x	0	$\pi/_{12}$	$\pi/_6$	$\pi/4$	$\pi/3$
$\sqrt{\sin x}$	0	0.5087	0.7071	0.8409	0.9306

JHARGRAM – 721 507

DEPARTMENT OF MATHEMATICS

ACADEMIC YEAR: 2020 - 2021

INTERNAL EXAMINATION – 2021 SUBJECT: MATHEMATICS PAPER: C 8 T (RIEMANN INTEGRATION AND SERIES OF FUNCTIONS)

Maximum Marks: 10

1) A function f is defined on [0,1] by –

$$f(x) = \begin{cases} 0, x = 0\\ (-1)^{n-1}, \frac{1}{n+1}x \le \frac{1}{n} \ (n = 1, 2, 3, \dots) \end{cases}$$

Prove that -

a. The function f is Riemann integrable on [0,1].

b. $\int_0^1 f = \log(4/e)$.

2)

SEM: IV

- a. If a function *f* is continuous on a closed and bounded interval [a, b] and $\int_a^b fg = 0$ for every continuous function *g* on [a, b], prove that $f(x) = 0, \forall x \in [a, b]$.
- b. If a function *f* is integrable on [a, b] and $\int_a^b f^2 = 0$, prove that f(x) = 0 at every point of continuity in the closed and bounded interval [a, b].
- 3) Let f:[a,b] → R be bounded and monotone increasing on closed and bounded interval [a, b]. If P_n be the partition of the closed interval [a, b] dividing into n sub-intervals of equal length, prove that -

$$\int_{a}^{b} f \leq U(P_{n}, f) \leq \int_{a}^{b} f + \frac{b-a}{n} \left(f(b) - f(a) \right)$$

Also consider the sequence of partitions $\{P_n\}_n$ and deduce that $\lim_{n \to \infty} U(P_n, f) = \int_a^b f$.

- 4) Let $\{f_n\}$ and $\{g_n\}$ be sequences of functions convergent uniformly to f and g respectively on [a, b]. Prove that the sequence of functions $\{f_n + g_n\}$ converges uniformly to the sum function f + g on [a, b].
- 5) Show that a sequence of functions $\{f_n\}$ on [a, b] is uniformly convergent to a function f if and only if $\lim_{n \to \infty} M_n = 0$, where $M_n = \sup |f_n(x) f(x)|$.

Answer booklets has to emailed to the following address -

JHARGRAM – 721 507

DEPARTMENT OF MATHEMATICS

ACADEMIC YEAR: 2020 - 2021

INTERNAL EXAMINATION – 2021 SEM: IV SUBJECT: MATHEMATICS PAPER: C9T

Full marks: 10

Answer any five questions

 $(5 \times 2 = 10)$

1) Let $f(x, y) = \frac{x^2 y^2}{x^2 y^2 + (x - y)^2}$ if $(x, y) \neq 0$ = 0 if (x, y) = 0

Show that repeated limit exist at the origin but double limit does not exist.

2) Show that the function $f(x, y) = x \sin \frac{1}{y} + y \sin \frac{1}{x}$, when $xy \neq 0$ = 0 when xy = 0

is continuous at (0,0).

3) If $u = \cos^{-1} \frac{(2x+y)}{(\sqrt{x}+\sqrt{y})}$, then find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + \frac{1}{2} \cot u$.

- 4) Examine the extrema of the function $f(x, y) = x^2 + 3xy + y^2 + x^3 + y^3$.
- 5) Find the equation of the tangent plane to the surface z = xy at the point (2,3,6).
- 6) Evaluate $\nabla \times (\frac{\dot{r}}{r^2})$.
- 7) Prove that the vector $\vec{A} = 3y^4z^2\hat{\imath} + 4x^3z^2\hat{\jmath} 3x^2y^2\hat{k}$ is solenoidal.
- 8) Find the work done in a moving particle in the forced field $\vec{F} = (2y+3)\hat{i} + xz\hat{j} + (yz-x)\hat{k}$ along the straight line joining (0,0,0) to(2,1,1).

Answer booklets has to emailed to the following address -

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – IV, INTERNAL ASSESSMENT, 2020-21 Sub: MATHEMATICS, Course – C10

Full Marks: 10 Answer any One question:

 $(1 \times 10 = 10)$

- 1. (a) Find $U(\mathbb{Z}[\sqrt{-5}])$.
 - (b) Show that it is impossible to have an integral domain with 6 elements.
 - (c) Let R be a commutative ring with unity and I be an ideal in R. Show that $rad(I) = \{a: a \in R, a^n \in I \text{ for some } n\}$ is an ideal in R. What is rad(Zero ideal)?

(d) Let V denote the vector space consisting of all upper triangular $n \times n$ matrices and let W_1 denote the subspace of V consisting of all diagonal matrices. Show that $V = W_1 \bigoplus W_2$ where $W_2 = \{A \in V : A_{ij} = 0 \text{ when } i \ge j\}$.

2 + 2 + 2 + 4

2. (a) Show that R/N has no nilpotent elements except zero where N is the nil radical of R.

(b) For a fixed $a \in \mathbb{R}$, determine the dimension of the subspace of $P_n(\mathbb{R})$ defined by $\{f \in P_n(\mathbb{R}): f(a) = 0\}$.

(c) Let V be a vector space and L(S) = V. If β is a maximal linearly independent subset of S, then prove that β is a basis for V.

(d) Let R be a ring with unity. Prove that if *char* R = 0 then \mathbb{Z} is isomorphic to a sub ring of R.

2 + 3 + 3 + 2

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – V , INTERNAL ASSESSMENT, 2020-21 Sub: MATHEMATICS, Course – C11

Full Marks: 10

Answer any one question:

- 1. (a) The velocities of a point parallel to the axes of x and y are $u + \omega y \& v + \omega' x$ respectively when u, v, w, ω' are all constants. Show that the path of the points is a conic.
 - (b) If the radial velocity is proportional to the transverse velocity find the path in polar coordinates.
 - (c) Prove that a planet has only a radial acceleration towards the sun.

(d) A particle is projected along the inner surface of a rough sphere and is acted on by no forces. Write down the equations of motion with proper explanation and picture.

3 + 2 + 3 + 2

- 2. (a) Classify the equation when it will be parabolic, elliptic, hyperbolic $(1 x^2)r 2xys + (1 y^2)t + 2px + 6x^2yq 6z = 0$.
 - (b) Write down the characteristic equations of $r = x^2 t$.
 - (c) Find the surface satisfying $t = 6x^2y$ containing two lines y = 0 = z & y = 2 = z.
 - (d) State Cauchy- Kowalewskaya Theorem.

2 + 3 + 4 + 1

$\mathbf{1}\times\mathbf{10}=\mathbf{10}$

Department of Mathematics Jhargram Raj College B. Sc(H), Sem – V Internal Assessment – 2021 Sub: Mathematics, Course: CC – 12

Full Marks: 10

Date:16.03.2021

Answer any one question.

1. Define inner automorphism of a group G. Show that (a) Inn(G) is a normal subgroup of Aut(G).

(b) $G/Z(G) \simeq Inn(G)$ where Z(G) is the centre of G and hence find the order of $Inn(S_3)$.

2. Let G be a finite group. Then show that $|G| = |Z(G)| + \sum_{a \notin Z(G)} [G: C(a)]$ where Z(G) is the centre of G and hence find the class equation for S_{3} .

JHARGRAM RAJ COLLEGE

JHARGRAM – 721 507

DEPARTMENT OF MATHEMATICS

ACADEMIC YEAR: 2020 - 2021

INTERNAL EXAMINATION – 2021 SEM: VI SUBJECT: MATHEMATICS PAPER: C 13 T (METRIC SPACES & COMPLEX ANALYSIS)

Full Marks: 10

Answer any five questions

(2×5=10)

- 1. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in a metric space (X,d). Prove that $d(x_n, y_n) \to 0$ as $n \to \infty$ if and only if the sequence z_n in(X,d), where $z_{2n} = x_n, z_{2n-1} = y_n$, for all $n \in N$, is a Cauchy sequence.
- 2. Let *A* and *B* be two closed subsets in a metric space (X, d_1) such that $X = A \cup B$, and let $f: A \to (Y, d_2)$ and $g: B \to (Y, d_2)$ be continuous mappings such that $f(x) = g(x), \forall x \in A \cap B$. Show that the combination mapping $h: (X, d_1) \to (Y, d_2)$, defined by $h(x) = \begin{cases} f(x), x \in A \\ g(x), x \in B \end{cases}$, is continuous.
- 3. If an open (respectively closed) set U in a metric space (X, d) can be expressed as a union of two separated sets A and B, show that each of A, B is open (respectively closed).
- 4. Suppose that f is analytic in a domain D. If the range f(D) lies in a circle then prove that f is constant.
- 5. Let γ be a closed contour and z be a point not on γ , then prove that the Winding number of γ with respect to z is an integer.
- 6. Suppose f and g are entire functions; g is never zero and $|f(z)| \le |g(z)| \forall z$. Show that there is a constant c such that f(z) = c g(z).
- 7. Let f be analytic in |z| < 5, suppose that $|f(s)| \le 10$ for all points on the circle |s 1| = 3. Find a bound for $|f^3(0)|$.

Answer booklets has to emailed to the following address -

JHARGRAM – 721 507

DEPARTMENT OF MATHEMATICS

ACADEMIC YEAR: 2020 - 2021

INTERNAL EXAMINATION – 2021 SEM: VI SUBJECT: MATHEMATICS PAPER: C14T

Full marks: 10

Answer any five questions

 $(5 \times 2 = 10)$

- 1) Let *R* be a ring with 1.Show that $\frac{R[x]}{\langle x \rangle} \simeq R$.
- 2) In the ring Z_8 , show that [1] + [2]x is a unit.
- 3) Show that Z[x] is not a PID.
- 4) Show that [4] and [6] are associates in Z_{10} .
- 5) Let R be an integral domain and p be a prime element in R. Then show that p is irreducible.
- 6) In Z[i], show that 3 is prime element but 5 is not prime element.
- 7) Show that the polynomial $2x^4 + 6x^3 9x^2 + 15$ is irreducible in Z[x].
- 8) Find all irreducible polynomials of degree 2 over the field Z_3 .

Answer booklets has to emailed to the following address -

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – I , INTERNAL ASSESSMENT, 2020-21 Sub: MATHEMATICS, Course:CC-1

Full Marks: 10

Answer any five questions:

 $(5\times 2=10)$

- 1. Find y_n , if $y = x^{n-1} \log x$.
- 2. If c is a point of inflection for f then prove that either f''(c) = 0 or f''(x) does not exists.
- 3. Solve $(x^2 2xy^2)dx (x^3 3x^2y)dy = 0$.
- 4. Solve $(1 + x^2)\frac{dy}{dx} + (1 x)^2 y = xe^{-x}$.
- 5. Show that the semi latus rectum of a conic is a harmonic mean between the segments of any focal chord.
- 6. Find the equation of the smallest sphere passing through the points (1,0,0), (0,1,0) & (0,0,1).
- 7. If P be a variable point such that its distance from the XZ plane is always equal to its distance from the y axis then show that the locus of P is a cone.
- 8. Evaluate $\int_0^{\frac{\pi}{4}} tan^6 x dx$, By using Reduction Formula.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – I , INTERNAL ASSESSMENT, 2020-21 Sub: MATHEMATICS, Course:CC-2

Full Marks: 10

Answer any five questions: $(5 \times 2 = 10)$

- 1. Determine $[2(\cos 30^{\circ} + i \sin 30^{\circ})]^5$ by application of De Moivre's Theorem. Write the answer in rectangular form.
- 2. Let a_1, a_2, \dots, a_n be *n* positive real numbers whose product is 1. Prove that $(1 + a_1)(1 + a_2)(1 + a_3) \dots \dots (1 + a_n) \ge 2^n$.
- 3. If *n* be an even integer then prove that $\varphi(2n) = 2\varphi(n)$.
- 4. Prove that [x] + [-x] = 0 or -1 according as $x \in \mathbb{Z}$ or not.
- 5. Find the fully reduced normal form of the matrix $\begin{pmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$.
- 6. Determine the condition for which the system of equations

$$x + 2y + z = 1$$

$$2x + y + 3z = b$$

$$x + ay + 3z = b + 1$$

as many solutions

- has many solutions. 7. Examine if the set $S = \{(x, y, z) \in R^3 : 2x - 3y + 5z = 0\}$ is a subspace of R^3 .
- 8. Show that the set of vectors $\{(1,2,3,0), (2,3,0,1), (3,0,1,2)\}$ are linearly independent in \mathbb{R}^4 .

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – III , INTERNAL ASSESSMENT-1st , 2020-21 Sub: MATHEMATICS, Course – C5

Full Marks: 10 Answer any five questions:

Time: 30 m. $(5 \times 2 = 10)$

- 1. Let $f:[a,b] \to \mathbb{R}$ be continuous in [a,b]. Let $x_1, x_2, ..., x_n$ be points of [a,b]. Show that there exist a point $\theta \in [a,b]$ such that $f(\theta) = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$.
- 2. Suppose f has the property that $|f'(x)| < 1 \forall x \in (0,1) \& f$ be continuous at x = 0 & x = 1. Show that the sequence $\{f\left(\frac{1}{n}\right)\}$ has a limit.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be infinitely differentiable function. Suppose that for some $n \in \mathbb{N}$, $f(1) = f(0) = f'(0) = \cdots = f^n(0)$. Show that $f^{n+1}(x) = 0$ for some $x \in (0,1)$.
- 4. From the definition prove that $\lim_{x\to 0} e^{\frac{-1}{x^2}} = 0$.
- 5. Show that |x| has no Maclaurin's series expansion.
- 6. Prove that in a metric space (X, d) for $A \subset X$, $\partial A = \partial(X \setminus A)$.
- 7. Prove that in a metric space (X, d) for $A \subset X$, \overline{A} is the smallest closed subset of X containing A.
- 8. Prove that $d_1(x, y) = \min \{1, d(x, y)\}$ is a metric if *d* is a metric.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – III , INTERNAL ASSESSMENT, 2020-21 Sub: MATHEMATICS, Course:CC-6

Full Marks: 10

Answer any five questions:

 $(5 \times 2 = 10)$

- 1. If each element in a group be its own inverse then prove that the group is abelian.
- 2. Find the all elements of order 5 in the group $(Z_{30}, +)$.
- 3. Prove that centralizer of an element in a group G is a subgroup of G.
- 4. Prove that in a cyclic group of even order, there is exactly one element of order 2.
- 5. Let G be a group and $a \in Z(G)$. Prove that $\langle a \rangle$ is a normal subgroup of G.
- 6. Prove that a commutative group of order 10 is cyclic.
- 7. Find all homomorphisims from the group $(Z_8, +)$ to the group $(Z_6, +)$.
- 8. Show that the groups (Q, +) and (R, +) are not isomorphic.

Department of Mathematics Jhargram Raj College B. Sc(H), Sem – V Internal Assessment – 2021 Sub: Mathematics, Course: DSE – 1

Full Marks: 10

Date:16.03.2021

Answer any one question.

1. Find the dual of the following problem and solve the dual problem. Also find the solution of the primal problem from the dual.

 $\begin{array}{lll} \text{Maximize} & {\sf Z}=5x_1-2x_2+3x_3,\\ \text{Subject to} & & \\ & & 2x_1-2x_2+x_3\geq 2,\\ & & 3x_1-4x_2 & \leq 3,\\ & & & x_2+3x_3\leq 5,\\ & & & x_1,x_2,x_3\geq 0 \end{array}$

2. (a) Find the optimal solution of the transportation problem

	D_1	D_2	D_3	D_4	
0 1	5	3	6	4]
0 2		5	Ū	-	30
~	3	4	7	8	15
U ₃	9	6	5	8	15
	10	25	18	7	

(b) Find the optimal assignment for the assignment problem with the following cost matrix

	I	Ш	III	IV	V
Α	11	17	8	16	20
В	9	7	12	6	15
С	13	16	15	12	16
D	21	24	17	28	26
Е	14	10	12	11	15

JHARGRAM - 721 507

DEPARTMENT OF MATHEMATICS

INTERNAL EXAMINATION – 2021 SEM: V SUBJECT: MATHEMATICS PAPER: DSE – II (PROBABILITY & SATISTICS)

Date: 16/03/2021

Maximum Marks: 10

ANSWER ANY TWO OF THE FOLLOWING

- A box of 250 transistors all equal in size, shape etc. 100 of them are manufactured by A, 100 by B and the rest by C. The transistors from A, B, C are defective by 5%, 10% and 25% respectively.
 - a) A transistor is drawn at random. What is the probability that it is defective?
 - b) Find the probability that it is made by A given that it is defective.
- 2) A fair coin is tossed twice. The random variable X is defined as the number of times heads shows up. Define the events (X = 0), (X = 1) and (X = 2) and determine the probability mass function of the random variable X.
- 3) The probability density function of a continuous random variable X is given by –

$$f(x) = \begin{cases} cx^2, 0 \le x \le 1\\ 0, otherwise \end{cases}$$

Calculate the unknown c and also determine $P(|X|^2 \le 0.5)$.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – VI , INTERNAL ASSESSMENT, 2020-21 Sub: MATHEMATICS, Course – DSE3

Full Marks: 10 Answer any One question:

 $(1 \times 10 = 10)$

- 1. (a) If $\varphi(n)|(n-1)$ then prove that n is a square free integer.
 - (b) If gcd(m, n) = 1 prove that $m^{\varphi(n)} + n^{\varphi(m)} \equiv 1 \pmod{mn}$.
 - (c) Prove that [x] + [-x] = 0 or -1 according as $x \in \mathbb{Z}$ or not.
 - (d) If $a, b \in \mathbb{N}$ such that $\frac{a+1}{b} + \frac{b+1}{a} \in \mathbb{N}$ then prove that $gcd(a, b) \le \sqrt{a+b}$
 - 2 + 2 + 2 + 4
- 2. (a) For any integer $n \ge 3$ Show that $\sum_{k=1}^{n} \mu(k!) = 1$ where μ is the Mobius function.
 - (b) Let r be a primitive root of the integer n. Prove that r^k is a primitive root of n iff $gcd(k, \varphi(n)) = 1$.
 - (c) If n is a positive integer , then prove that

(i)
$$\sum_{n=1}^{N} \tau(n) = \sum_{n=1}^{N} \left[\frac{N}{n}\right]$$

(ii) $\sum_{n=1}^{N} \sigma(n) = \sum_{n=1}^{N} n \left[\frac{N}{n}\right]$

- (d) Find the average of all positive integers less than n and prime to n.
- (e) Prove that there are primitive roots for $2p^k$ where *p* is an odd prime and $k \ge 1$.

2 + 2 + 2 + 2 + 2

JHARGRAM RAJ COLLEGE

JHARGRAM – 721 507

DEPARTMENT OF MATHEMATICS

ACADEMIC YEAR: 2020 - 2021

INTERNAL EXAMINATION – 2021 SEM: VI SUBJECT: MATHEMATICS PAPER: DSE – 4T (MATHEMATICAL MODELLING)

Maximum Marks: 10

- 1) Let f(t) has the laplace transform F(s). Prove that for any constant c the laplace transform of the function $e^{ct}f(t)$ is F(s-c). [1st shifting property]
- 2) Determine the following $L(3e^{-2t}\cos 5t)$.
- 3) Prove that laplace transform is a linear operation, that is for any two functions f(t), g(t) whose laplace transform exists and for any constants a, b L(af(t) + bg(t)) = aL(f(t)) + bL(g(t))
- 4) Determine the laplace transform f the following functions
 - a. $f(t) = \cosh t \cdot \cos t$
 - b. $f(t) = \frac{1}{t}(1 \cos t)$
- 5) Determine the inverse laplace transform of the following function –

$$F(s) = \frac{e^{-s}}{s^2} - \frac{e^{-2s}}{s^4}.$$

Answer booklets has to emailed to the following address -

JHARGRAM – 721 507

DEPARTMENT OF MATHEMATICS

ACADEMIC YEAR: 2020 - 2021

INTERNAL EXAMINATION – 2021 SEM: II SUBJECT: MATHEMATICS PAPER: GE – II T (ALGEBRA)

Full marks: 10

Answer any five questions.

 $(5 \times 2 = 10)$

1. If $x_j = \cos \theta_j + i \sin \theta_j$, $(j = 1, 2, 3, \dots, n)$ show that –

$$x_1 x_2 \dots \dots x_n + \frac{1}{x_1 x_2 \dots \dots x_n} = 2\cos(\theta_1 + \theta_2 + \dots + \theta_n)$$

- 2. If α, β, γ be the roots of the equation $x^3 qx + r = 0$, find the equation whose roots are $\left(\frac{1}{\alpha^2} + \frac{1}{\beta^2} \frac{1}{\gamma^2}\right), \left(\frac{1}{\beta^2} + \frac{1}{\gamma^2} \frac{1}{\alpha^2}\right), \left(\frac{1}{\gamma^2} + \frac{1}{\alpha^2} \frac{1}{\beta^2}\right).$
- 3. If $A \cup B = A \cup C$ and $A \cap B = A \cap C$ prove that B = C.
- 4. Prove that $2^n 5^n 6^n + 9^n$ is divisible by 12 for all $n \in \mathbb{N}$.
- 5. Determine the rank of the matrix $A = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 4 & 8 & 6 \\ 3 & 6 & 6 & 3 \end{pmatrix}$.
- 6. Determine the conditions for which the system of equations has many solutions.

$$x + y + z = b$$

$$2x + y + 3z = b + 1$$

$$5x + 2y + az = b^{2}$$

to find A^{100} where

- 7. Use cayley-Hamilton theorem to find A^{100} , where $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$.
- 8. Find the eigen values and the corresponding eigen vectors of the real matrix $\begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$.

Answer booklets has to emailed to the following address -

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – I , INTERNAL ASSESSMENT, 2020-21 Sub: MATHEMATICS, Course – GE1

Full Marks: 10 Answer any five questions:

 $(5 \times 2 = 10)$

1. Find the asymptotes parallel to the coordinate axes of the curve –

$$4x^2 + 9y^2 = x^2y^2.$$

2. Evaluate the following limit –

 $\lim_{x\to 0} \lim \frac{\sin^2 x}{1-\cos x}$, by application of **L'Hospital's Rule.**

- 3. If $J_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx$ then prove that $J_n + n(n-1)J_{n-2} = n(\frac{\pi}{2})^{n-1}$.
- 4. Prove that the length of one arc of the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ is 8*a*.
- 5. Find the equation to the curve $9x^2 + 4y^2 + 18x 16y = 11$ referred to parallel axes through the point (-1, 2).
- 6. Determine the nature of the conic $x^2 6xy + y^2 4x 4y + 12$.
- 7. Solve $(y^2 + 2x)dx + 2xydy = 0$.
- 8. Solve $(x^2 y)dx + (y^2 x)dy = 0$.

Email your's answer paper to the following mail id:

I.A./2nd/COURSE-C5/SEM-III/2019-20.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – III , INTERNAL ASSESSMENT, 2020-21 Sub: MATHEMATICS, Course – SEC-1

Full Marks: 5

Answer any two questions:

 $(2 \times 2.5 = 5)$

- 1. Show that $p \leftrightarrow q$ is logically equivalent to $p \rightarrow q$ and $q \rightarrow p$.
- 2. Show that $((p \to q) \land (q \to r)) \to (p \to r)$ is a tautology.
- 3. Let p(x, y) denotes "x + y = 5". Assume that domain is the set of real numbers. Find the truth value of the following (a) $\forall x \exists y \ p(x, y) . (b) \exists y \ \forall x \ p(x, y)$.

Department of Mathematics Jhargram Raj College B.Sc(H), Sem-IV Internal Assessment 2020-21 Sub: Mathematics, Course: SEC-2

Full Marks: 5

Answer any two questions:

 $(2.5 \times 5 = 5)$

- 1. Show that the maximum number of edges in a simple graph with n vertices is $\frac{n(n-1)}{n}$.
- 2. Show that in a graph, the total number of odd degree vertices is even.
- 3. Prove that in a Euler graph all the vertices are of even degree.

Please send the Answer Scripts to jrcmathematics2020@gmail.com